

"A three-tiered technique to prioritise fuel treatments and analyse trade-offs under multi-objectives"

August 28, 2018

ana.martin@uva.es

SUMMARY:

I. Relevance of the problem

Reviewing the evidence

II. Challenges and ideas

Purpose of the research

III. Research design

- Case study
- Three-step approach for decision-making in eucalyptus forest

IV. Outcomes analyses

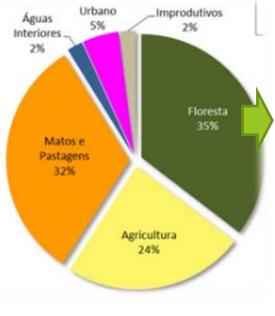
Results & Discussion

V. Considerations

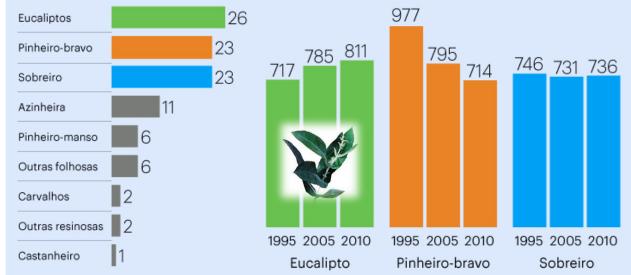
I. Relevance of the problem

I. BACKGROUND

☐ The management of sustaining forest ecological base, in a changing socio-economic, demographic and political context is a challenge...



- Understanding wildfire behavior first at stand-level and landscape-level is critical to address wildfire impacts in Portuguese forest management planning
- Preventive silviculture management is a dynamic instrument needing knowledge about the localization of the critical points to address


I. EVIDENCE | Forest species

Plantations dominated by eucalypts encompass 811 thousand hectares

26% of the whole forested area

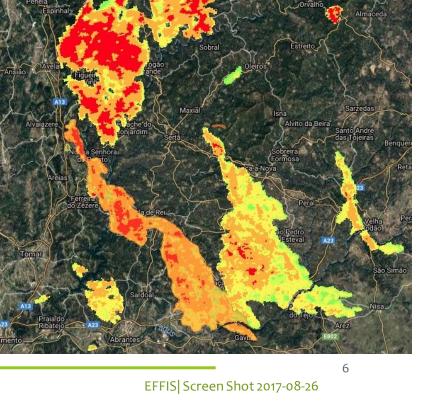
resulting in the main forest cover type in continental Portugal

I. EVIDENCE | Forest fires

PORTUGAL

Fajão August

2017


Burned area of central Portugal (red = more severity)

The fires have left deep wounds in the tight knit agricultural communities of central Portugal

A total of 150 thousand hectares

I. EVIDENCE | Forest fires | Pedrogão Grande

Portugal has become a particularly stark case of what the future may hold if changes to land, climate and economies go mismanaged!

Photo: NASA, August 2016

17/07/2017

Faro

lisbon

ACoruña

PORTUGAL

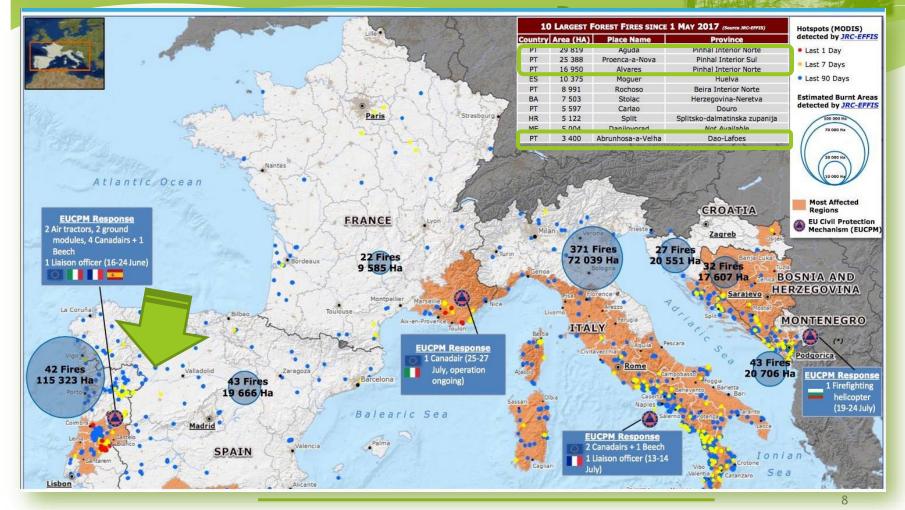
Vigo

PORTUGAL

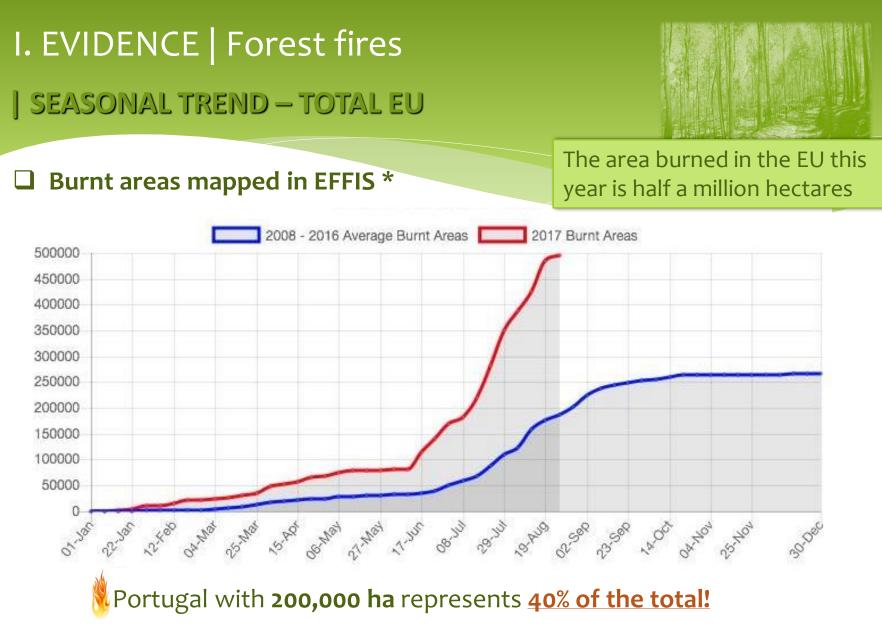
Bilbao

Valladolid

Sevilla

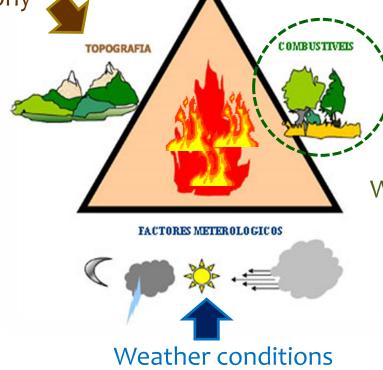

Madrid

SPAIN


I. EVIDENCE | Forest fires

| Forest Fires in Southern Europe (Previous 90)

27/07/17


ERCC - ECHO Daily Map | 27/07/2017

I. EVIDENCE | Forest fires

Three factors comprise the fire behavior triangle :

The area's topography

The amount of fuel

We can lower fire risk and wildfire damage by **removing** or **reducing** fuels in strategic locations...

II. CHALLENGES AND IDEAS

Forest System 25(2), e&COS, P pages (2016) 25(2), e&CSS, P pages (2016) 25(2), 2171-9645 http://dx.doi.org/10.2424/#22104212-96292 Instituto Nacional de Investigación y Tecnología Agarxis y Alimaentaria (NIRA)

OPEN ACCESS

RESOURCE COMMUNICATION

Temporal optimisation of fuel treatment design in blue gum (Eucalyptus globulus) plantations

Ana Martin¹, Brigite Botequim^{1*}, Tiago M. Oliveira¹, Alan Ager⁴, Francesco Pirotti³ ¹Sustainable Forezt Management Research Institute University of Valiadoiid-INIA, Avda de Madrid 44, 3004 Palencia, Spain. ⁻¹Centro de Estudos Forestaii (CEF). Instituto Superior de Agronomic, Universidade de Liboa (UL). Edițicio Mario de Asevedo Gomez Tapada da Ajuda, n/s, 1349 - 017, Lisboa, Portugal. ⁻¹The Navigator Company, Forest Protection Department, Apartado 55, 2901-861 Setubal, Portugal. ^{*}USDA Forest Service, Rocky Mountain Research. 7775 Highway 10 West, Missoula, MT 59800 USA. ^{*}Universita degli Studi di Padova, Diparimento Territorio e Sistemi digro-forestatii. Hale dei Universita, 16, 55020, Padova, Italy

Abstract

Aim of study: This study was conducted to support fire and forest management planning in eucalypt plantations based on economic, ecological and fire prevention criteria, with a focus on strategic prioritisation of fuel treatments over time. The central objective was to strategically locate fuel treatments to minimise losses from wildfire while meeting budget constraints and demands for wood supply for the pulp industry and conserving carbon.

Area of study: The study area was located in Serra do Socorro (Torres Vedras, Portugal, covering ~1449 ha) of predominantly Eucalyptus globulus Labill forests managed for pulpwood by The Navigator Company.

Material and methods: At each of four temporal stages (2015-2018-2021-2024) we simulated: (1) surface and canopy fuels, timber volume (m' ha') and carbon storage (Mg ha'); (2) fire behaviour characteristics, i.e. rate of spread (m min'), and flame length (m), with FlamMap fire modelling software; (3) optimal treatment locations as determined by the Landscape Treatment Designer (LTD).

Main results: The higher pressure of fire behaviour in the earlier stages of the study period triggered most of the spatial fuel treatments within euclypt plantations in a juvenile stage. At later stages fuel treatments also included shrublands areas. The results were consistent with observations and simulation results that show high fire hazard in juvenile euclypt stands.

Research highlights: Forest management planning in commercial eucelypt plantations can potentially accomplish multiple objectives such as augmenting profits and sustaining ecological assets while reducing wildfire risk at landscape scale. However, limitations of simulation models including FlamMap and LTD are important to recognise in studies of long term wildfire management strategies.

Keywords: Eucalypt plantations; fire hazard; FlamMap; fuel treatment optimisation; Landscape Treatment Designer; wildfire risk management.

Citation: Martin, A., Botequim, B., Oliveira, T.M., Ager, A., Pirotti, F. (2016). Temporal optimisation of fuel treatment design in blue gum (*Eucohynus globulus*) plantations. Forest Systems, Volume 25, Issue 2, eRC09. http://dx.doi.org/10.5424/fs/2016252-09293. Received: 13 Jan 2016. Accepted: 05 May 2016

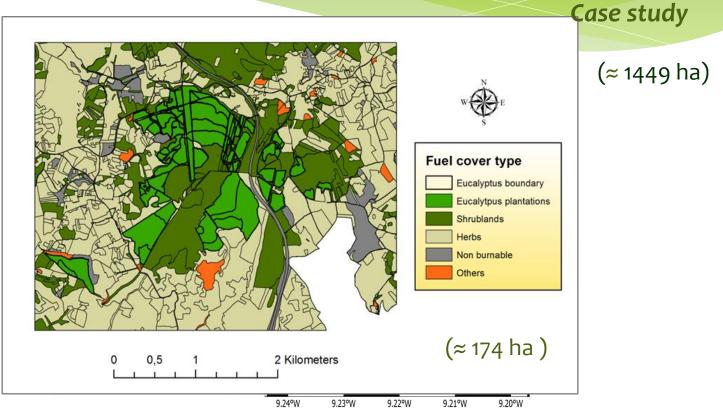
Copyright © 2016 INIA. This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial (by-nc) Spain 3.0 Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Funding: The authors received no specific funding for this research.

Where to treat? When to treat? How should be applied? Shape and size?

II. CHALLENGES AND IDEAS Purpose of the research :

reduce <u>spatial-temporal fire exposure at landscape-level under multi-objectives</u> to reduce fuel accumulation

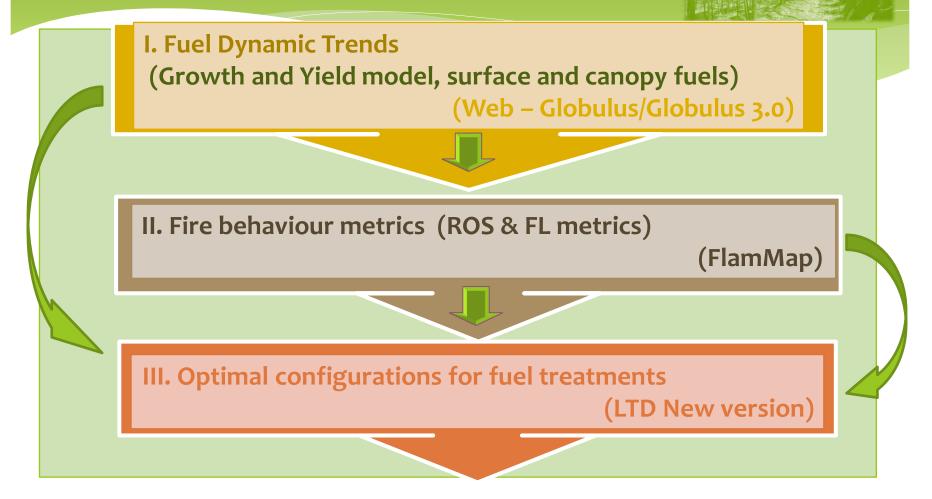

support fire and forest management planning in fast-growing forest plantations based on <u>economic</u>, <u>ecological</u> and <u>fire prevention</u> criteria

A multi-objective planning was performed to strategically locate fuel treatments:

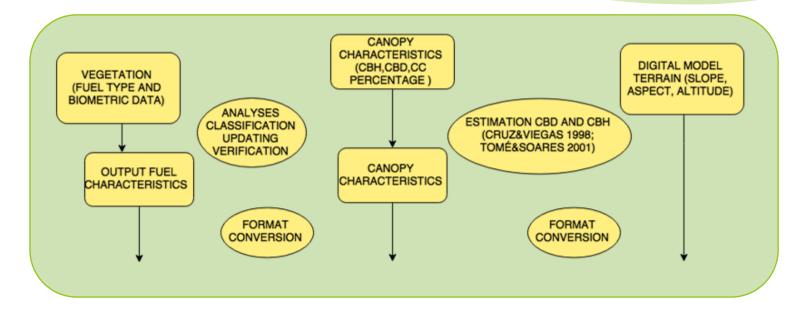
- to minimise losses from wildfire
- Meeting seasonal budget constraints for prevention activities
- Maximize demands for wood supply for the pulp industry
- maximize demands of carbon storage

Serra do Socorro (Torres Vedras, central Portugal)

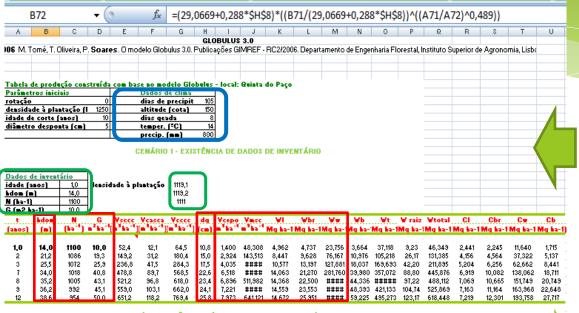
Eucalyptus globulus forest plantation cultivated for pulpwood by The Navigator Company - the leading paper company in Europe.


Case study

Set of different stages of eucalyptus plantations in Serra do Socorro


Four temporal stages
2015 (t=0)
2018 (t=1)
2021 (t=2)
2024 (t=3)

| Three-step approach for decision-making in eucalyptus forest


| Three step approach

I. Fuel Dynamic Trends

 Identifying fuel composition and stand conditions at temporal stage with the assistance of the growth and yield model

A. Growth and Yield model | Simulating stand-level growth

en dad	los de in	rentári	0													
QE (=)	19,0		deas	idade à p	lantação	(ka-1)	1250]								
t.	hdom	N	G	Vsece	Veasea	Vecce	dq	Vcepo	Vasc	VI.	Wbr	V.	₩b.	Wt.		
anos	(=)	(ha ⁻¹)	n ² ba'	"[m"ha"][n ¹ ha ⁻¹]	[n ² ha ⁻¹]	(cm)	m"ba"	n ha't	Mg ka-1	Mg ha-	Mg ha-1	Mg ka-	'Mg ha-1)		
1	1,8	1234	0,3	0,2	0,1	0,3	1,8	0,023	0,000	0,270	0,124	0,060	0,014	0,468		
2	4,9	1217	1,7	2,9	0,9	3,8	4,2	0,159	1,082	1,099	0,665	1,087	0,194	3,046		
3	7,6	1201	3,5	9,4	2,6	12,0	6,1	0,370	6,792	2,033	1,405	3,938	0,623	7,999		
4	10,0	1185	5,4	18,9	4,8	23,8	7,6	0,610	15,891	2,303	2,192	8,484	1,253	14,838		
5	12,0	1170	7,3	30,4	7,4	37,8	8,9	0,856	27,075	3,689	2,966	14,312	2,026	22,993		
6	13,8	1154	9,0	43,0	10,2	53,3	10,0	1,097	39,515	4,368	3,703	21,032	2,895	31,998		
7	15,3	1139	10,7	56,4	13,1	69,5	10,9	1,330	52,660	4,953	4,395	28,337	3,829	41,513		

(Globulus 3.0., Tomé et al. 2006)

Driven by:

- Environmental-climatic
- Stand characteristics (management)
- Biometric data

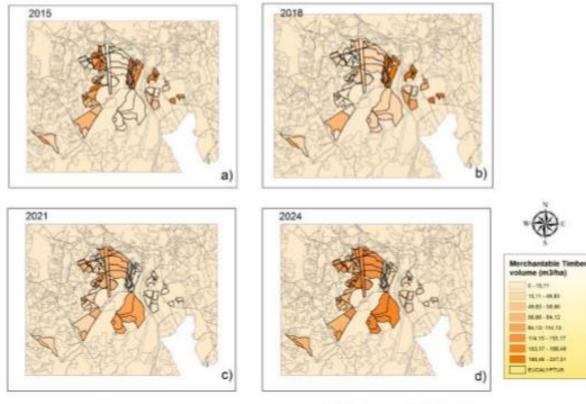
Outputs:

- Biometric variables (input FlamMap by canopy eq.)
- Dominant Height
- Wood volume and total biomass

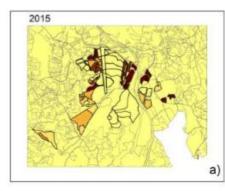
B. Dynamic fuel population

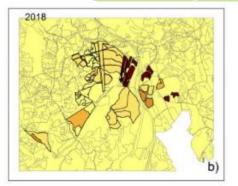
- The fuel model type and canopy cover (CC, %) change over time due to planting operations, harvesting, and vegetation regrowth
- Identification fuel model key
- Fuel load characterisation
- Expert knowledge from the mill's pulp and paper company

Outputs:

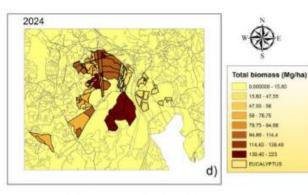

- Fuel model type
- CC percentage

C. Fuel dynamic trends

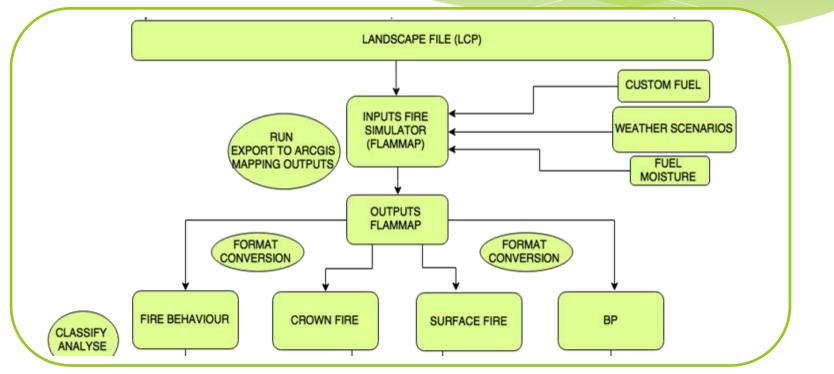

□ Merchantable Timber volume (m3/ha)



D. Fuel dynamic trends

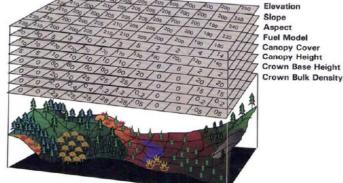


Total Biomass (Mg/ha)



| Three step methodology

II. Fire behaviour metrics


Characterizing fire behaviour over time

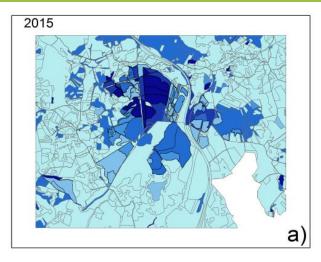
C. Fire Behaviour metrics

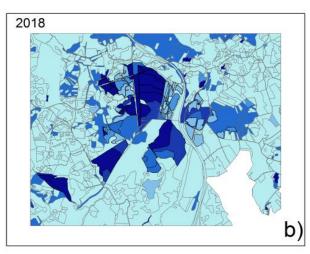
Inputs: fire environment fuel& weather& topography

LCP file:

(Finney 2003)

- Fuel and canopy cover
- Canopy characteristics: CBD, CBH
- DTM
- 7% 1-hour fuel moisture content (97th percentile weather during fire season)
- Wind data-32km/h, Northwest, 320° azimuth direction
- Fuel custom type

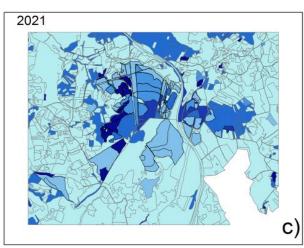

Fire behaviour metrics



FireGlobulus project January 2015

C. Fire Behaviour metrics

| Assessing flame length over time

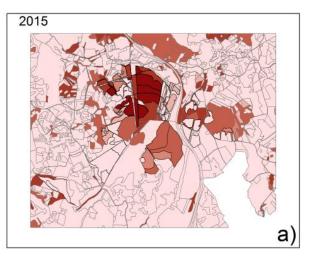


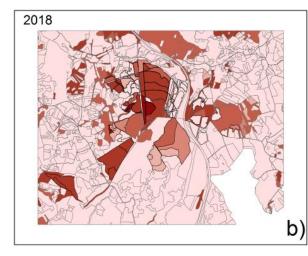

<3m in b) >3 m in a)

> EUCALYPTUS 0 - 0,5 0.5 - 1.5 .5 - 3

> > 10

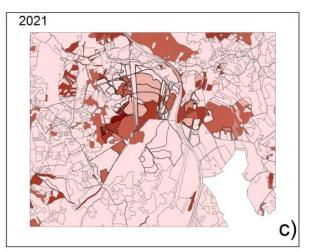
Fuel type and fire hazard associated?

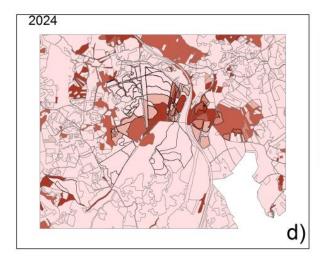


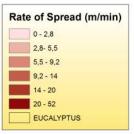


2 Kilometers 0 0.5

C. Fire Behaviour metrics

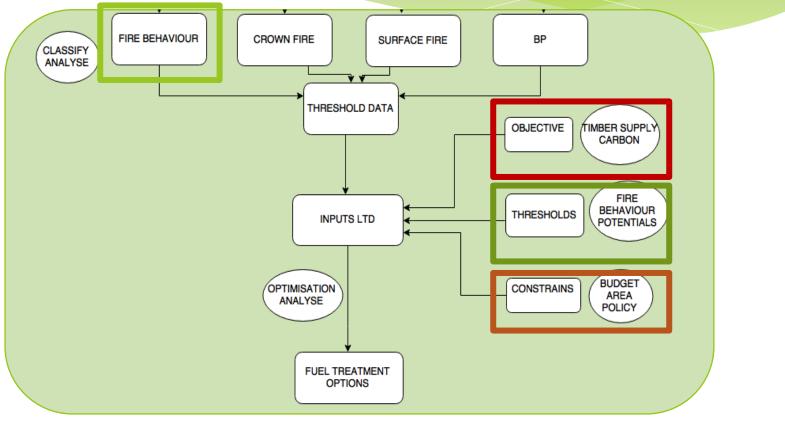

Assessing rate of spread over time

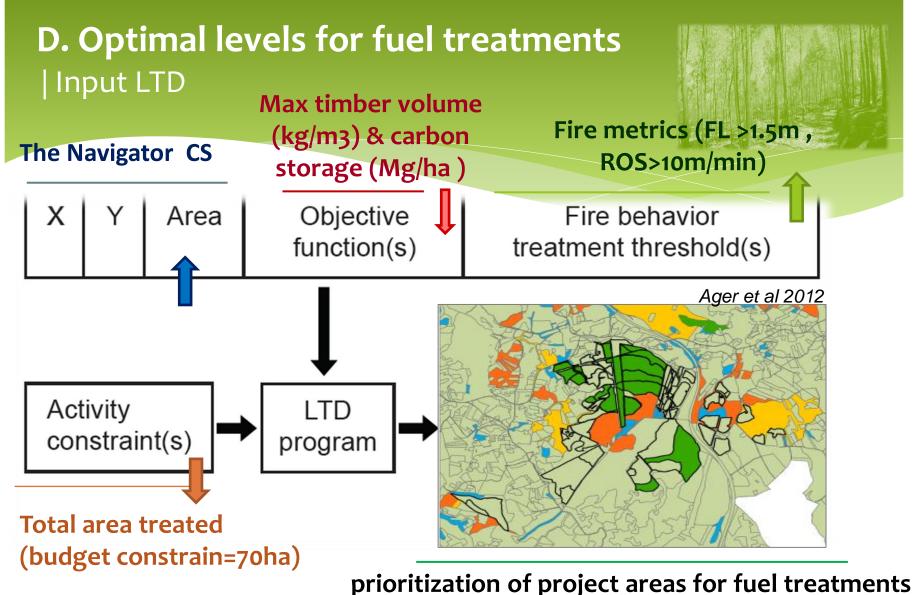




<14 m/min in c)d) >14 m/min in a)b)

CC% asociated?





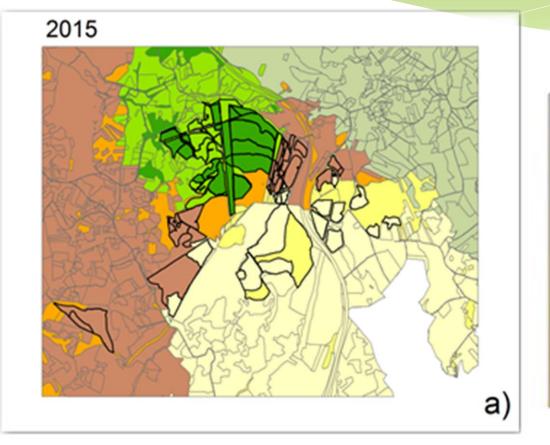
0 0,5 1 2 Kilometers

| Three step methodology

III. Optimal configurations for treatment locations

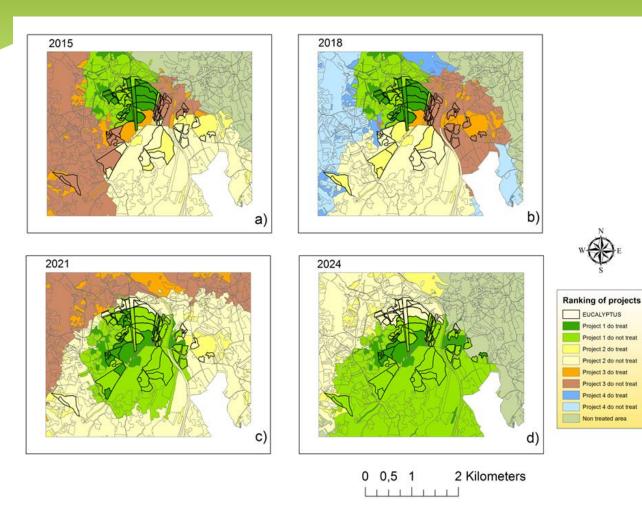
D. Optimal levels for fuel treatments |LTD simulation

	Landscape Treatment Designer		
	Input Shapefile: C:\/Activeprojects\/developing\/nputs LTL_Ana Martin\/FID_1		Field Weighting
 Fuel treatment 	Outputs Base Name: C:\'Activeprojects\'developing\inputs LTL_Ana Martin\output	t Generate Adjacency	4
allowance level		Dbjective Direction: 1 - Maximize	Effects Field Name
intensity about		lax Project Diameter (meters): -1	
4% for the	Priorities and Weights	Objective Search Depth:	
whole	Vmc15 Treat ▼ 1.00 1.00 100 C_15 Treat 1.00 1.00 100 Min	Check Exclusions Exclusion Field:	Add Effect Delete Effect
landscape		ep File:	Output Solution Images Disable Points file Output Disable Shapefile Output
	Add Objective Delete Objective		Treatment Efficiency Treatment Efficiency Field:
40% of the area		nstraints - Treat until following constraints are met	Subunits
within eucalypt		eld Name Start Value Stop Value Step Slack NAMA_12 100.00 100.00 100.00 100.00	Enable Subunits
plartations			🖉 Iterate thru Sul units
	Add Threshold Delete Threshold	Add Constraint Delete Constraint	Single Subunit Value:
	Load Save As Save	Run Close	Save Archive Load Archive

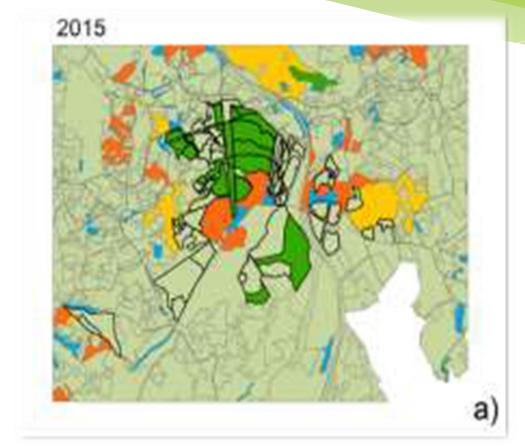

Ager, A.A.; Vaillant, N.M.; McMahan, A. 2013. *Restoration of fire in managed forests: a model to prioritize landscapes and analyze tradeoffs.* Ecosphere 4:art29.

IV. OUTCOMES ANALYSES

Assessing strategic fuel location - 70 ha


coordination of treatment to build large patches

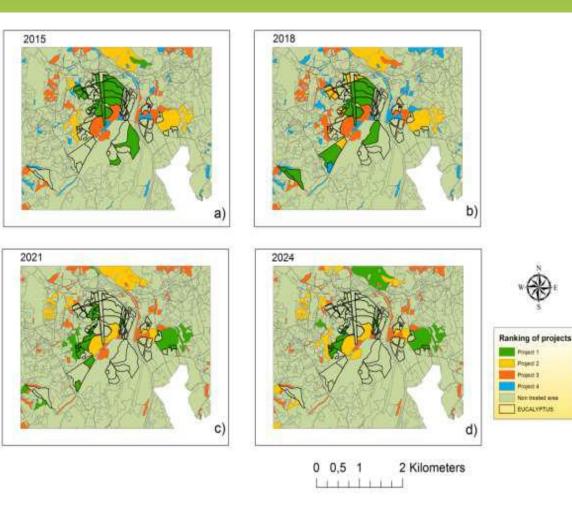
IV. OUTCOMES ANALYSES Assessing strategic fuel location - 70 ha


The results were consistent with observations and simulation results that show high fire hazard in juvenile eucalypt stands

ROS and FL decrease over time, number of project decrease

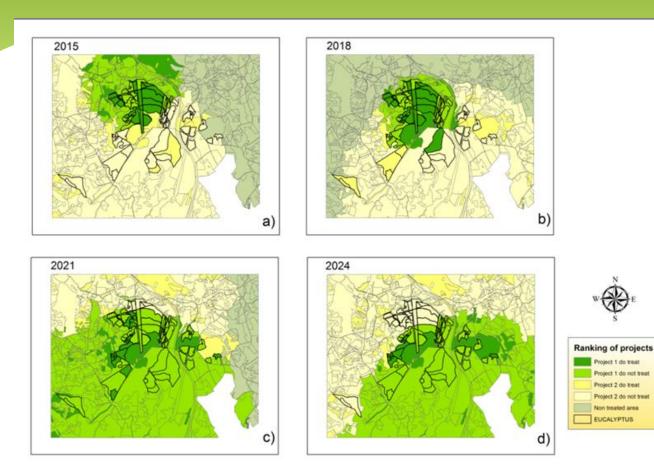
IV. OUTCOMES ANALYSES

Assessing strategic fuel location - 70 ha


Individual and independent fuel treatments strategy

NON-AGGREGATE

IV. OUTCOMES ANALYSES Assessing strategic fuel location - 70 ha


NON-AGGREGATE

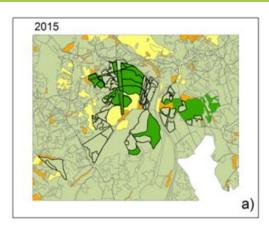
The higher pressure of fire behaviour in the earlier stages of the study period triggered most of the spatial fuel treatments within eucalypt plantations in a juvenile stage

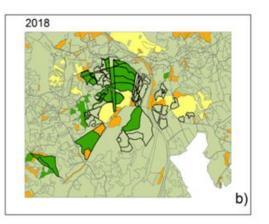
Optimazing young plantations vs mature stands

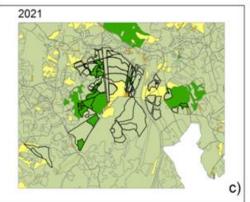
IV. OUTCOMES ANALYSES

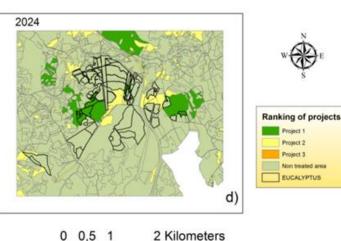
Assessing strategic fuel location - 100 ha

2 Kilometers 0 0.5 1


The number of available projects decrease over time as fire metrics decreases over time and do not surpass thresholds thus do no trigger fuel treatments operations


Project 1 do treat Project 1 do not treat Project 2 do treat


Project 2 do not treat Non treated area EUCALYPTUS


IV. OUTCOMES ANALYSES Assessing strategic fuel location - 100 ha

NON-AGGREGATE

Project 1 Project 2

Project 3 Non treated area

EUCALYPTUS

The higher fire hazards belong to periods 2015 and 2018

In later stages of the study period fuel treatments included juvenile eucalypts but also shrublands areas

Some considerations

V. CONSIDERATIONS

- ✓ The time-investing strategies in this work present an innovation for a <u>optimal fuel prevention management over time</u>, which is an insight into real-life problems in forest planning.
- ✓ The planning methodology might help creating collaborative opportunities within landowners for accomplishing objectives. Where should The Navigator Company invest on prevention? Which stands should be assumed for fire prevention treatment management?
- ✓ Forest management planning in commercial eucalypt plantations can potentially accomplish multiple objectives such as augmenting profits and sustaining ecological assets while reducing wildfire risk at landscape scale.

PREVENTIVE SILVICULTURAL PRACTICES!

VI. ACKNOWLEDGEMENT

- The Navigator Company for supplying the inventory databases and support in field visit
- * **Project INTEGRAL** "Future Oriented Integrated Management of European Forest Lands, both funded by the European Union Seventh Framework Programme (FP7-PEOPLE-2010-IRSES
- * SuFoRUn "Models and decision SUpport tools for integrated FOrest policy development under global change and associated Risk and Uncertainty" (FP7-PEOPLE-2009-IRSES)
- * Project FIRE-ENGINE " Design Flexível de Sistemas de Gestão de Incêndios Florestais -" (MIT/FSE/0064/2009), financiado por fundos nacionais através da FCT/MCTES (PIDDAC) e co-financiado pelo Fundo Europeu de Desenvolvimento Regional (FEDER)

ana.martin@uva.es

Gracías! Obrigada! Thank you!

39